Inequalities for modified Bessel functions and their integrals
نویسندگان
چکیده
منابع مشابه
Some Inequalities for Modified Bessel Functions
We denote by Iν and Kν the Bessel functions of the first and third kind, respectively. Motivated by the relevance of the function wν t t Iν−1 t /Iν t , t > 0, in many contexts of applied mathematics and, in particular, in some elasticity problems Simpson and Spector 1984 , we establish new inequalities for Iν t /Iν−1 t . The results are based on the recurrence relations for Iν and Iν−1 and the ...
متن کاملInequalities for Integrals of Modified Bessel Functions and Expressions Involving Them
Simple inequalities are established for some integrals involving the modified Bessel functions of the first and second kind. In most cases, we show that we obtain the best possible constant or that our bounds are tight in certain limits. We apply these inequalities to obtain uniform bounds for several expressions involving integrals of modified Bessel functions. Such expressions occur in Stein’...
متن کاملSome Integrals Involving Bessel Functions Some Integrals Involving Bessel Functions
A number of new definite integrals involving Bessel functions are presented. These have been derived by finding new integral representations for the product of two Bessel functions of different order and argument in terms of the generalized hypergeometric function with subsequent reduction to special cases. Connection is made with Weber's second exponential integral and Laplace transforms of pr...
متن کاملOn Turán Type Inequalities for Modified Bessel Functions
In this note our aim is to point out that certain inequalities for modified Bessel functions of the first and second kind, deduced recently by Laforgia and Natalini, are in fact equivalent to the corresponding Turán type inequalities for these functions. Moreover, we present some new Turán type inequalities for the aforementioned functions and we show that their product is decreasing as a funct...
متن کاملFunctional Inequalities for Galué’s Generalized Modified Bessel Functions
Let aIp(x) = ∑ n 0 (x/2)2n+p n!Γ(p + an + 1) be the Galué’s generalized modified Bessel function depending on parameters a = 0, 1, 2, . . . and p > −1. Consider the function aI p : R → R, defined by aI p(x) = 2pΓ(p+1)x−paIp(x). Motivated by the inequality of Lazarević, namely cosh x < ( sinh x x )3 for x = 0, in order to generalize this inequality we prove that the Turán-type, Lazarević-type in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.05.083